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NUMERICAL SIMULATION W FRACTURE

,
,?

Leonard G. Margolfn

Los Alamos National Laborato~
Las Alamos, NM 87545

SUMMARY. A constltuttve model foj rtttle, and quasi-brittle materials fs described. The Bedded Crack Model
contains a microphysical description of fracture based on Griffith f.heory. The effect of cracks on materfal
properties {s described by effective modulus theory. Underlying the model is a statfst{cal framework in which
the evolution In time of a statistical distribution of cracks is calculated. The theory upon which the model Is
based ts described.

The model fs Implemented in a flnfte difference cmputer code. Our model is contrasted with the phencmenologlc
mod~ls usually found In computer cedes. A computational simulation of the strafn rate dependence of failure
stress fs presented snd ccmpared with laboratory data. A simulation of a gas gun experiment is presented, and
the mechanism of span described.

INTRODUCTION
used to describe the distribution of cracks, as a

Computer simulation of stress wave [::tfon of size and orfentatlon, as lt evolves in

propagation in geologlc materfals Is a subject of .

growing importance. Inter*st fs generated by such
dfverse programs as In situ recovery of fossil

In the next se~tfon, we contrast the BCM

energy, predtctton of&Hfi@akes, cratering, and with the phenomenologfc mdels commonly used In

contafmnent of underground nuclear explosions. computer s{mulattons and ofnt out some advantages

The chbracte?lzatlon of mater{al behavior, and In [Inherent in a mfcrop~vs cal approach. Ue then

particular of fracture, is a key element In hrfefly descrfbe the throreticul basis of the

build~ng these computer medals. UIOW1. Ffnally, we present numertcal calculations
using the BCM.

The Bedded Crack Model (BCkl)Is a
const!tutive model that has been developed for
numerical simulation of fracture In a brittle, or
quasi-brfttle matertal, The BCM is based on a
m{crophysfcal pfcture in whfch the evolut{on of a
statistical distribution of penny shaped cracks is
calculated, The BCM aildre$sestk.}questtons. For
a materfal containing penny shaped cracks

1) how does the stress ffeld affect the cracks -
that f$, whencpn cracks row?

2) /’how do the cracks a feet the material
propertfts - that 1s, what are the effective
moduli of a crackw matwial?

Intrinsic to the model Is a statistical framewor~

Prevfous papers (1,2,3) descrlbo the use of
BCM t.o simulate field events - for ●xample,
cratertng experiments In 011 shal~ where a typical
Ien th scale Is tens of meter?. I:fthls paper, we
Wll! descr{be simulations laboratory
experiments. Ne wI1l show that the BCM Is
inherently capable of pred{ctfng the dependence of
fracture Stre\s on Stra{n rate without uddltional
parameters. Also, we wtll show a simulation of a
gas gun experiment and span.

PHENOWNOLOGIC VERSUS MlC!40PHYSICA1.MODELS

There ara tio @spccts of modeling the
fractur? process. Ftrst, we must consldsr the
effect of the stresses on the cracks. Second, we



must allow for the effect of the cracks on the
smterlal properties, and on stress wave
propagation through the material. These two
as~cts occur simultaneously and Interactively,
but en much different levels. The ●ffect of
stress on the Individual cracks fs a mlcrosc~lc
process. The effect of a statlst!cal ●nsemble of
cracks on material properties fs a macroscopic
process. The manner in which these two processas
are r~ated to each other allows a separation of
computer models In two broad categories -
phenomenologic and mfcrophyslcal.

Phenomenologfc models Ignore the detafls of
crack growth and concentrate on describing the
effects of fracture on stress wave propagation.
In the absence of knowledge about crack growth, a
mathematical formallsm analogous to plasticity
theory Is used. A material property called
fracture stress Is defined so that when the stress
in the material exceeds the fracture stress,
frecture “occurs” and the stress field Is relaxed.
The relaxation usually ln~olves a second material
parameter which Is a characteristic time scale.

The concept of fracture stress as a material
~roperty Is convenient and Intuitively appealing.
Unfortunately, It Is not experimentally just{fied.
Failure stress as measured In the laboratory Is
found to depend on maw aspects of the experhant
such as sample size and strain rate. Although the
experimental results do not support the existence
of a constant fracture stress, the results are
quite consistent with Grlfflth theory which we
w1ll describe In the next section.

Wcrophysfcal motels of fracture follow the
growth of cracks and use this information to
calculate effectlwe elastlc modull for the medium.
Th~s class of models enjoys several advantages
over phenomeno?ogic models. To begfn w?th, the
Input tc a chlculbtlon consists of physlcall
rnaanffigful fnumbers, determined by experhenta
measurement. Because the model Is basad on
physfcal processes and physical properties, l~f~~
capable of sealfng from laboratory
cxpcrfments up to ffald experiments. An
addit~onal bonus Is that detailed knowledge of
crack statist~cs can becimie the bas{s of
colculatfon of such yopertfes as porosity,
permeability an~ part{cle s:~t dfstrlbutfon.

GRIFFITH THEORY

Much work has been d,ne on the theory of
fractare. Much of thfs effort buflds on the
orfglntl work of Grtffith (4) and Is based on two
Ideas:

1) B!lttla materials contalnmlcroscoptc flaws;
2) The s~abillty of crtcks under loading can be

addressed fn terms of a balance of energies.

The meatuwl failure ttrength of brfttle
mater{cis Is ofttn two orders of magnitude smaller
than theoretical esttmates based on braakfng
atomfc bonds. Grlfflth postulated the ●x{*tence
of t{ny flaws In the matcrlal. The mathamatfcal
solutlon for the stress ffeld In the prasence of a
flaw shows that tho flbw tf s act as $trest
concentrators f

{pe)”ma~~~~~~~al y r-duclng the!ltrongth of Furthermore, e

statistical dlstrlbutfon of flaw density as a
function of size and orientation 1s a materfal
property which can be determined directly from
section and counting.

Each microscopic flaw 1s really a tl~
crack. It fs cru;~;ch then to understand the
conditions under a crack can grow.
Grlfflth’s theory {S based cm the first and second
laws of thermodynamics. For a virtual extension
of the crack, Griffith compared the release of
elastlc strain ●nergy (U) with the Increase In
surface energy (S). The surface energy Is a
macroscopic representatlcw!of the energy required
to break atomic bonds. In these terms, the
Zrfffith crfterfon states that a crack wfll grow
If the ener~ release exceeds the ●~ergy required
to grow the crack. Mathematically,

$--c [u-s] <0

where c Is the crack radius.

Griffith’s analysls applles to two-
dfmenslonal silts In normal tension. lie have
generalized these results to three-dimensional
cracks in a spatfally unlfonn, but otherwise
arbitrary external stress. For cracks In the x-y
plane, where ~z is posftlve (tensile), the crock
will grow If

ti=Polsson’s ratio
E = Young’s modulus
T . coefficient of $urfacc t~~slon
Equatlorl(2) shows that, in any external applied
stress, there Is a crftical crack s~ze. Cracks
larer than crftfcal are unstable to growth whfle

?sma ler crdcks are stable. The eff?ct of shear
stress 1s to decrease the crftical crack size.

When ~ Is negattve (compressive), the
crack It clos~~. In this case, tha energy balance
of equation 1 must Include the additional energy
dissipated by frlctlon between the crack faces.
Assuming the frfctfon has themagn{tude

T “To -p Vzz
where T Is a cohcston and

P
1s the Onamfc

cnefffclifitof frlctlon. Tha rack can still grow
in this casa If

The effect of frfctton 1s to increase thecrfttcal
crack stxe. He notethat friction may stablllze
cracks even In the presence of large shear. Me
speculate that d~f< IS related to the brfttle-
ductlle transitlonubserved lnmany rocks (6).

EFFECTIVE MODULI

The presence of cracks alters the effective
elastfc wdull of the matwlal, The effectfv~
modult are found from static solutlons fur the
displacement f{eld for a body cOntalnfnQ a
StOtfStfC81 dtstrlbut{or of cracks and subjacted
to a spatially UnlforWI,but othmdse arbltra
stress ffeld (7). 7For ●xample, for a materfa
containing cracks bedded parallel to tha X-Y



plane, the effectfve component of compliance C
is related to the compliance of the ma~;~~
materfal Cozzzz by

c =CZzzz :222/(1 +y-?)g)

H r , wls th t frd moment of the crack densl~
7=d~s{rfbutlon Nfc,t

‘75m Nc3=
–s

N(c,t) C3 dc
v’ o

The dimensionless number g Is really a
measure of tho amount of fracture. The Inverse of
the crack den$lty Is the volume per crack, and so
1s like the cube of the dfstance betieen cracks.
Thus, vis the cube of the ret{o of crack SIZR to
crack spacing. Hhen ~ls approximately equal to
1, the cracks are about as big as they are far
apart. Me Interpret this as fragmentation. The
results of Hoentg (7) show that the effective
modull of a randomly cracked material are reduced
to zero at 1;= 9/16.

In the modulus calculation,%plays the role
of an expansion parameter. To lcwest order, the
interactions between cracks are Ignored. For
larger values of F , crack interactions are
accounted for by a self-consistent calculation.
The self-cg;slstent method (7) presupposes
knowledge the crack distribution. In
particular, a spat~ally random distribution Is
usually assumed. This cannot be a reasonable
assumption as approaches 9/16. Indeed, one can
see that this effect of crack Intersections must
be second ‘order( ~ 2).

The details of self-consistent corrections
to the effect~ve module are probably not important
for calculations of stress wave propagation.
However, they may play an {mportant role lf one fs
Interested In using the crack statistics to
calculatftfragment size.

The cffectfve modulus theory predicts a
reduced elastlc compliance for a cracked body. A
more ac-~Jratepicture for stress wave propagation
Is contained in elastlc scattering theory.
Conslderatlon of the scattering of a wave from a
penny shaped crock leads to a dispersion relat(on
(8) and shows that the Onam{c effective modull
are ccmplex. The Imaginary part represents the
attenuotlon of the wave due to ●nargy loss fn th~
scattering pracess.

Computer modellng of the attenuation Is
dlfftcult, for the attenuation Is frequency
dependent. However, the anal.vsls(8) shows that
the ittenuatlon of these amplttude fs smaller than
the henge fn modulus by an add{t!onal factor of

f(kc) wnere k {s the wave nltmber. Thfs rtprc$ents
a %mall effect In most calcualtfons and fs
Ignored,

As the cracks grow the dlstrfbutlon wolves
and so ~ and the effect~ve moduli vaty In t{nw.
Tho constitutive relatlon takes the form

d
-$% “ ~ [~kl ~k~]

or

Maxwtll silld~ but with a variable relaxation
time.

SIZE AND STRAIN RATE EFFECT

Laboratory measurements of failure stress
show a dependence on sample size. This result Is
easily understood ~n terms of Grffflth theory.
Equation 2 may be Interpreted as saying that big
cracks will commence to grow at lower stress
ievels than smaller cracks. Statfstlc&lly, bfgyer
samples are more likely to contain bigger cracks.
For example, a ffve centimeter sample cannot
contain a SIX centimeter crack, tiereas a ten
meter sample could easily contain a sfx centimeter
crack.

A further analytic result (9) fs that cracks
have an asymptotic speed of growth which is a
fract{on (!./3to 1/2) of the shear wave speed.
The existence of this limit leads to a strain rate
dependence of fa\Jure stress. No matter how fast
the material Toaded, crack growth and
consequent stress relaxation (equation 8) Is
lfm{ted. Thus, at hfgher strain rate, e lcrger
stress wfll be tolerhted before the cracks grow
sufftc~entll to relax the stress.

Figure 1 - A plot of fractu}e stress vs. st!aln -
rtte for oil shale. The trfongles are y~g
experimental data of Grady and Klpp (10}.
so’ld I{ne represents computer stmulatfons wft
the BCM. The two points at about 10 $ec-1

represent tests along, and across the beddfng
planes. Results at h{gher strnfn rates are not
sensftlve to ori~ntet!on w{th respect to the
bedding plan~s.

This eff~ct Is shown in f{gure 1. The data
are from Grady and Kfpp (10). Ihc solfd line
reprasmts the BCM stmulatfon cf a t@nstle failure
test. in the simulation, we assumed an
exponential size dfstrlbutfou - the number of
cracks w!th radius gre&;er then c IS

Noexp (-c/c) .

The results of f{gure 1 usw only the fracture
parmneter$ N and c, the fracture toughness (which

!Is qulvalen to the constant T In equat{on ?) and



the ●lastlc constants. Figure 4 - The stress pulse generated by Impact Is
shown. The horizontal axis Is distance along the
sample axis. The pulse Is approximately a square
wave, and Is negattve which 1S compressive by our
convention.

The growth of cracks In the sample as a
result of the reflect&d pulse can be described in
terms of which ts deffned fn equation 6. Ffgure
5 shows as a functfoa of posftton in the sample
as computed by BCM. The sharp peak represents the
large growth of cracks in this regfon, leadlng to
a separation plane and a span layar. The span
layer Is approximately half as wide as the
fncoming pulse. .,

Figure 2 - Stress-strain curves for ofl shale for
three strain rates. These curves were ~nerated
by the BCM, and their maxima are points on the
solid curve of figure 1. Note that the relaxation
afttr fatlure is steeper for smaller strain rates.

SPALLATION

The BCM has been inserted Into a two-
(ilmenslonalstress wove code SHALE. The c~de was
used to study Spdllatfon In gas gun experiments In
terms of crack growth. He sfmulated a gas gun
experiment In which a cylindrical sample of ofl
shale was Impacted by a high-speed projectile.
The sample (figuro 3) was 4 cm long and 1 cm in
diameter. tie aswmed the cracks were ber!dedtn
:!:::s” that were perpendicular to the cylindrical

As a result of the fmpact, a compressive
pulse was genertted, travelled down the axis
toward the free surface at the other end of the
sample, and was rz~lectd as a tensfle wave. The
wav? was about 1 cm in width and -10 ~bar fn
amplftude (figure 4). Details of the reflection
of thfs pulse ~’rcmthe free surface are shown In
figure 5.

Ffgure 5 - The stress pulse 1s shown in three
stages of fts reflection from tht free surface at,
the and of the sample. Gemtrfc construction Is
consistent with the emergence of the first
significant tenston about one half wave length
from the free surface.

‘Igure 3 - A cylfndrfca’
gas gun slmulattoc.
perpendicular to the CJ
vcrttcal tn this f~gure.

sample of ofl shale for a
The spallatlon process, as sfmulated by BC14,

can be described as follows. In general, cracks
The beddtng planes are can grow In tensfon,

llndrtcal axfs - this 1s,
shear, or a combination of

the two as describad by our
r

ncralfzed Grlfflth
Crlterta (equatfons 2 and 4 .. . Because of the
$lmplt! geometry and the acs~$ orfc~tatlon of the
cracks In the sample, tension 1S the only means of
ctusing crack growth, Ffgurc 5 shows that durfng
the r?flectton of the wave fr~ the free surfac?,
no Signlflcant tensfons develop closer to the free
surface than about one-half pulse wfdth away.
Therefore, there IS llttle or 110crack growth fn
the span layer. Uh*r@ tensfons do develop, thv
crack growth fs rapfd and the fracture process



attenuates the re]lected tensfle wave, producfng
the sh?rp peaks In shown In ffgure 6. The sharp
peak Indfcates a small regton of intensely cracked
material which has no strength - the effective
modulus relatlng stress to strain (equation 5) Is
very small. This region represents the separation
plane.

v
r

Figure 6 - The dimensional numt.er ~ls plotted
along tht sample aKis. The ste?p paak 1$
associated with large cra~k growth due to the
first emergence of the tensfle rellef wave.
Separation callhe exp~cted at this spot, leadlng
to spallat{on.

THE SHALE COOE

The IICM has been implemented In the two-
dlmensio!,alstress wave code S}!ALE. SHALE is a
finite difference code based on the “ALE” method
(11) in which the computational mesh may have an
~rbttrary veloctty wtth respect t~ the materf?l.
Particular cases are the famtlfsr Lagrsngtan
calcul~tions 1~ which the mesh moves with the
ma~erfal, and Luleriaficalculations uhlch employ a
fixed wsh.

In general, Lagrangfan calculations are
preferred because they introduce the least
numer~cal dif!usfon Into the results. However, In
problems with large defomatlons, Lagrangfan cells
distort, accuracy in the
differencec;~;o;~ma;;;~$. ‘in this sltuat{on, the
cwnputationa! time step (which 1s based on a
Couran! Stabflity Criterfon) becomes very small,
MM fng calculatlont very expenstve or even
Impractical.

The .~~. method provides a powerful
alternative to Lagrangi&n mesh tangllng and to
Eulerfan diffusiveness. The calculation Is run In
a Lagrange fashion until the mesh begins to
distint. Then a continuous rezoner is employed
which prevents tanglfng and consquent loss of
accuracy. The computer prog”am Is smart ●nough to
allow rezoning only where it Is necessary.

Two problems arfse in the simulation of wave
propagation !n solids whfch are not Important for
wave propagation in fluids. Both problems are
associated with the use of a coastftutlve relation
In piace of an equation cf state. The dlstinct~on
that we make is that & Constitutfve relation
relates stress rate to strain rate, thus allowing
a dependence of the state on the history of the
loading.

The ffrst problem Is associated with the use
of artlfical viscosfty (12) to represent shock
waves. The artlfical vfscosfty smears the
numerfcal precursor to the shock over three or
four cumputatfonal cells. (The vlscoslty is
artiffcal because It scales with mesh spacing
which 1s not a physfcal quantity.) Because all
cracks grw with the same asymptotic speed, the
shape of the precursor plays an Important role in
determining the amount of fracture ahead of a
shock.

The artifical vfscosity can also change the
prediction of the span plane locetfon. Our
calculations in the previous section show that the
span depth is half the wavelength of the fncorn!ng
pulse. If artffictal vl~cosfty {s allowet to
smear the pulse too greatly, It wI1l also affect
the span dapth. The c~re for these effects of
*rtlflcal viscosity is to use sufficiently fine
c~putatfonal m~hes. The “ALE” technfque can be
beneficial herr If the rezoner *S used to let ffne
zones follow the shock.

The second problmn found In solid dynamic
calculations 1s related to numertcal stabflfty.
Matkematfcally, SHALE numerically Integrates a
coupled set of partfal differential equations.
The stabtllty e? the Integration leads to
restrictions on the size of t!’$computational time
step such as the well-known tourant condition.

The ute of a constttutlve relatfon adds
another partttildifterentlal equatfon to the set
bnd alters the stablllty. Hicks ha? shown (13)
that the stabtlfty uf the calculation requtre< the
time step to be a fractfon of the relaxation time
In oquatlon (8). Thfs condftfon 1s simple to
Implement, but Is not well known.
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